
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 473
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Agile and Traditional Requirements
Engineering: A Survey

Heba Elshandidy, Sherif Mazen

Abstract— In the past few years, there has been an increasing awareness of the important role of requirements engineering (RE) in a
project’s success, in both research and industry. Developing consistent requirements specifications that meet the customers’ needs, in
traditional development, is likely to be infeasible. For one reason, customers do not usually have a clear picture of what they really want.
Secondly, the business domain could be changing quickly, especially if it heavily depends on technologies. Agile software development
(ASD), on the other hand, supports iterative and incremental development and emphasises customers’ involvement in the development
process. We argue that adopting ASD in RE overcomes the limitations of the traditional development. ASD, however, is no silver bullet and
its adoption comes at a price. This paper helps the reader to: (1) get a quick yet a comprehensive grasp of RE in traditional and ASD; (2)
understand the synergies/commonalities between the two approaches in handling RE; (3) recognise the associated challenges of adopting
ASD; and (4) identify the current prominent agile RE research areas.

Index Terms— agile RE challenges, agile RE practices, agile RE research areas, agile requirements engineering, agile software
development, requirements engineering, traditional RE

 —————————— ——————————

1 INTRODUCTION
equirements engineering (RE) is the process of
determining what the system does and not how it does
it. The increasingly changing business environments

have challenged the principles of traditional RE, in a sense
that, in the past few years, the awareness of organisations to
adopt changes instead of resenting them has significantly
increased, as suggested by many experienced practitioners.
Since requirements often evolve, then the only way to
guarantee the success of a given project is to embrace these
changes.

Embracing changes throughout the different stages of
development is likely to be infeasible in the traditional RE
aproach, as the RE process takes place only once prior to the
start of development; thus, any changes that are presented
afterwards will be costly, if they are doable at all. This is one
of the main reasons why agile software development (ASD)
has received such a great attention from many practitioners in
the RE field. Unlike the predictive and process-oriented
traditional development, ASD methods are adaptive and
people-oriented [1]. According to the studies in [2,3], more
than two thirds of the factors that contribute to a project's
success fall under the umbrella of RE and ASD. Hence,
surveying the potential of bringing them together will
undoubtedly benefit both research and industrial
communities.

This paper attempts to answer the following research
questions: What is the current research state-of-the-art in
traditional RE (Section 2)? What are the RE practices adopted

in ASD (Section4)? What are the commonalities and
differences between agile and traditional RE approaches
(Section 4)? What are the challenges associated with the agile
RE practices adoption (Section 5)? And lastely, what are the
agile RE areas that are still in need for research (Section 6)?
The paper also gives an overview about ASD in Section 3 and
it finally concludes the presented work in Section 7.

2 REQUIREMENTS ENGINEERING
Successful RE requires a very good understanding of the
business domain, the environment in which the system will be
running, and the needs of the project's stakeholders
(customers, users, developers, etc.) [4]. In traditional
development, the following is assumed: (1) the customer
precisely knows, from the beginning, what they need from the
system; (2) the development team understands the customer’s
needs correctly and clearly; (3) only one or more stakeholders
are in charge of elaborating the requirements; and (4) there is a
strict separation of different functions with little focus on
cross-functional teams [5]. Somerville and Sawyer claim that
the RE process is composed of five main tasks: elicitation,
analysis and negotiation, modelling, validation and
verification, and management [4]. The rest of this section gives
further details about these tasks including the most popular
work offered in each activity.

2.1 Requirements Elicitation
Requirements elicitation is the process of discovering and
elaborating the requirements of a system. These requirements
could be very well understood, fuzzily understood, or
innovative problems. Generally, this task requires a very good
knowledge not only of the application domain, but also of the
specific problem the system to-be is trying to solve. Previous
work in requirements elicitation focused mainly on solutions
that improve the precision, the accuracy, and the different

R

 ————————————————
• Heba Elshandidy is currently a researcher in Information Systems Dept.,

Faculty of Computers and Information, Cairo University, Egypt. E-mail:
helshandidy@gmail.com

• Sherif Mazen is currently an associate professor in Information Systems
Dept., Faculty of Computers and Information, Cairo University, Egypt.
E-mail: s.mazen@fci-cu.edu.eg

IJSER

http://www.ijser.org/
mailto:helshandidy@gmail.com
mailto:s.mazen@fci-cu.edu.eg

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 474
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

levels of details for requirements [6]. To this end, the related
work will be summarised subsequently.
 Notations are developed to help better understand the

requirements and expedite the process of exploring and
learning the stakeholders’ needs, while facilitating
discussions through using models that are unlikely to be
misinterpreted by the different stakeholders. The
following are examples for such notations: scenarios [7],
agent-based [8],[9],[10], sequence charts [11], use cases
[12], anti-models [13],[14],[15], non-functional
requirements [16], goal models [17,18], and policy [19].
Such models tend to be inexpensive and they significantly
ease the process of collecting feedback from the
stakeholders as early as possible.

 Many methodologies have been proposed for the
elicitation of requirements, in which they are used for: (1)
dentifying stakeholders [20]; (2) ensuring that the
requirements are not diverted away from the scope of the
project, such as personas [21,22] and metaphors [23]; (3)
considering the context and the environment, in which the
system will be deployed, as well as the personal
requirements when extracting the requirements of the
system [24,25]; and (4) identifying the luxurious
requirements to help making the final product more
attractive and likeable, such as brainstorming and
creativity workshops [26]

 Many tools have been offered to elicit feedback on the
early representation of a system, such as model-driven
development [27], simulations [28], storyboards [29], and
model animations [30,31]

2.2 Requirements Analysis and Negotiation
The main purpose of this task is to identify and resolve any
conflicts, overlaps, omissions, and inconsistencies in the
elaborated requirements. The output list of this task is then
negotiated and prioritised, in a sense that an agreement,
among the system’s stakeholders, is reached about what
requirements to be implemented and in what order [4]. Most
of the research done in this area focuses on the development
of new, or the improvement of existing, methodologies and
techniques for efficiently and precisely evaluating the quality
of the produced requirements [6].
 Methodologies1 in that area proposed solutions and

guidelines for the problems of: negotiation [32],
requirements alignment with commercial-off-the-shelf
(COTS) products and open systems [33,34], and the
management of conflicts of the unknown interactions
between requirements [35].

 There are plenty of analyses conducted to help in locating
linguistic issues, which could be a barrier for having
understandable and conflict-free requirements. The work
in [36],[37],[38],[39],[40] investigated cases where errors
could be ambiguous, while the work in [41],[42],[43],[44],

1 A methodology is usually a guideline system for solving a problem, with
specific components such as phases, tasks, methods, techniques and tools

[45],[46] investigated cases where errors could be
inconsistent or incomplete. Further work includes
analyses for locating: (1) possible obstacles to the
satisfaction of requirements, goals, and elaborated
assumptions [47,48]; (2) missing assumptions [49]; or (3)
unknown interactions among requirements [35],[50],[51].

 Techniques2 in [52],[53],[54] address risk and impact
analysis, so that the team can accurately understand the
requirements, their inter-associations, and the
consequences of that interdependencies. Techniques for
prioritisation, visualisation, and analyses have also been
presented; thus enabling the stakeholders to adequately
select the most favourable set of requirements to be
implemented [55],[56],[57],[58],[59], or identify well-fitted
solutions for COTS based projects [33,60].

2.3 Requirements Modelling
Modelling represents the step that bridges the gap between
analysis and design through providing formal visual
representations for the system. A model is considered a good
one if it is unambiguous, complete, precise, and can be easily
communicated with all of the involved stakeholders [61].
Having a good modelling process means: (1) there is a
consistent and precise defined vocabulary across the system;
(2) diagrams are used to adequately visualise the system
specification (i.e. each model records specific details about the
requirements); (3) the different points of view of the system
are properly considered; and (4) the elaborated requirements
are validated through animation [61]. For further details, the
main modelling approaches/methods are summarised next.
 The main traditional modelling approaches are data flow

diagrams (DFDs), entity relationship diagrams (ERDs),
and statecharts. While DFDs show how data is processed
at different levels of abstractions, ERDs show the
conceptual representation of the requirements [62].
Statecharts, on the other hand, are used to describe the
behaviour of a system [63].

 The main object oriented approaches are class diagrams
and use cases. While class diagrams represent a system as
a set of objects encapsulating the details of their behaviour
and characteristics, the use cases define the interactions
between the users of a system and the system itself.

 The literature also spoke of three main types of methods
that are used for modeling requirements, namely:
viewpoint, object oriented, and formal methods. The
viewpoint methods (e.g. CORE [64], SADT [65], and
VORD [66]) believe that requirements should be
elaborated from the perspectives of all the stakeholders.
The object-oriented methods (e.g. OOA [67], OMT [68],
and the Booch Method) were initially adopted by
companies believing that time-to-market and resistance to
change were paramount. Formal Methods (e.g. Z, VDM,
LOTOS, and the B-Method), on the other hand, believe in

2 A technique describes how to perform a particular technical activity, and, if
appropriate, how to use a particular notation as part of that activity.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 475
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

a more rigorous representation based on mathematics
[69].

 Notations such as the Unified Modelling Language (UML)
are of a critical importance in modelling, because of the
number of models they offer, and in which each model
represents a different phase of development and
collectively they describe the system under development
[70].

2.4 Requirements Validation and Verification
Requirements validation is the process of ensuring that the
development team is building the right product. This is
achieved through reviewing the requirements artefacts with
the stakeholders, to guarantee that the models and the
documentation reflect their needs accurately [71]. The main
research done in this area was based on simulations [72],
animations [30],[31],[73], and derived invariants [74].

Requirements verification, on the other hand, is the
process of ensuring that the development team is building the
product right. Formal requirements can be verified through
model checking, model satisfiability, and notations. While
model checking, an algorithmic analysis of programmes,
automatically tests whether a system model meets a given
formal specification [75], model satisfiability checks that there
exist valid instantiations of constrained object models, and
that operation on object models preserve invariants [76].
Notations, on the other hand, facilitate automated verification,
where these verification models are the simplifications and the
abstractions of the specification to be verified [77,78].

To sum up, the typical requirements validation and
verification approaches used in traditional development
include: tracing approaches, prototyping, testing, user manual
writing, formal validation, and reviews and inspection (e.g.
walkthroughs, formal inspections, and checklists) [4].

2.5 Requirements Management
Requirements management is primarily concerned with all the
activities associated with changing the requirements of the
system from change/version control to requirements tracing
and status tracking. There are plenty of tools and techniques
to simplify, and partially automate, the task of identifying and
documenting traceability links among requirements
[79],[80],[81],[82],[83]. Also, there exist analyses that
determine the stability of requirements to adequately manage
future changes, while making and evaluating the architectural
choices accordingly [84].

3 AGILE SOFTWARE DEVELOPMENT
ASD is a group of software development methods based on
incremental and iterative development. According to the agile
manifesto [1], ASD is defined in terms of values, principles,
and practices. Unlike traditional development methods, agile
development does not encourage upfront detailed planning
for the entire project, and promotes both quick clean delivery
and stakeholders’ involvement in the entire process of

development [85]. Table 1. summarises the main differences
between traditional and agile development [86].

Agile development encompasses six main methods, where
they all share the core values and principles plus some
common practices such as on-site customer, short iterations,
frequent releases, prioritisation based on features delivering the
highest business value for the customer, simple design, and peer
reviews [87]. Intuitively, each method defines its own practices
based on the vision of that method. Next, these methods will be
briefly addressed.

3.1 Scrum
It focuses on management in situations where it is difficult to
plan ahead. The features to be implemented in the system are
listed in the backlog, where the product owner (the voice of
the customer) decides which of these items are to be
developed in each sprint (iteration); the development team,
then, self-organises and coordinates their work through
various practices such as daily scrums and sprint planning.
The Scrum method is greatly supported by a Scrum Master,
who makes sure that the process is followed and there are no
obstacles hindering the team from working effectively [88].

3.2 Extreme Programming (XP; XP2)
Extreme Programming believes in implementing the best
practices of software development. XP adopts 12 practices,
which are: simple design, test-driven development,
refactoring, pair programming, small releases, metaphor,
collective code ownership, planning game, continuous
integration, on-site customers, 40-h week, and coding
standards. The revised version of XP is called XP2 and it

 TABLE 1
 TRADITIONAL VERSUS AGILE DEVELOPMENT

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 476
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

adopts similar practices to these of XP with slight variations
such as: quarterly cycle, weekly cycle, and 10-minute build
[89,90].

3.3 Feature-Driven Development (FDD)
FDD is a short-iteration process that focuses on the
development of critical systems, where an iteration of a
feature consists of both design and building. FDD is a blend of
model-driven and agile development with assertion on object
models, division of work in features, and iterative design for
each feature [91].

3.4 Dynamic Systems Development Method (DSDM)
DSDM is a rapid application development framework that
consists of 3 phases: (1) pre-project (for the feasibility study);
(2) project life-cycle (for the business study); and (3) post-
project (for the development). DSDM adopts 9 main
principles: empowering the project team, iterative and
incremental development, testing throughout the
development lifecycle, frequent delivery, efficient and
effective communication, user involvement, addressing
current business needs, allowing reversing changes, and high-
level scope being fixed before project starts [92].

3.5 The Crystal Methodologies
They are a family of methodologies: Clear, Yellow, Orange,
Red, Magenta, Blue, and Violet. As with real crystals, each
colour of these methodologies corresponds to the project size
and criticality. The Clear methodology is considered the most
agile or the lightest weight crystal methodology and hence it
gained a lot of popularity [93]. The main focus of the Clear
methodology is communications in small teams developing
non-life critical systems and it adopts the following 6 principles:
frequent delivery, regular reflection workshops, osmotic
communication, easy access to expert real users, and code versioning
tools [93].

3.6 Adaptive Software Development
Provides a framework, with enough guidance, to save large
and complex projects from falling in chaos; it strongly
encourages incremental iterative development with constant
prototyping. Adaptive software development consists of three
phases: (1) speculation (recognising the uncertain nature of
complex problems and encouraging exploration and
experimentation); (2) collaboration (working jointly to
produce results, share knowledge, or make decisions); and (3)
learning (acknowledging failure and positively reacts to
mistakes). The principles of this method are: mission focused,
feature based, iterative, time-boxed, risk driven, and change
tolerant [94].

4 AGILE REQUIREMENTS ENGINEERING
Both vagueness and frequent changes in requirements are
unavoidable. Thus, following the traditional RE practices to

develop clear, consistent, and complete requirements, before
the design and the implementation begin, seems to be
infeasible.

The ability of ASD to embrace continuous changes in
requirements, accommodate the growing technology
evolution, and deliver working software early to market, has
made it a very appealing software development approach. In
this section, the light is shed on the agile RE practices.

4.1 Requirements Elicitation
The techniques used in this phase of development are much
like those of the traditional development. However in agile,
the elicitation process is performed iteratively and
continuously, before each development iteration, accentuating
the communication of the elaborated requirements with the
customer. The most common techniques that are used in agile
requirements elicitation are:
 Face-to-Face Communication: the main purpose of RE in

an agile environment is to help or guide the customer to
articulate and communicate his/her needs. This is done
through: (1) Interviews, which is the most traditional and
commonly used technique. They can be structured with a
predetermined set of questions or unstructured where the
emphasis is placed more on open discussions [95]; and (2)
Joint Application Development (JAD), in which a well
structured group session with defined steps, actions, and
roles for participants is followed [96,97].

 User stories: is the practice used by agile methods to
record the system requirements. A user story describes a
feature that delivers a value for the customer and usually
it is written on a paper note card. On each note card, the
description of the story is written at the front while its
acceptance test goes at the back. They are also used for
planning and documenting the requirements [98,99]. The
customer’s team takes the responsibility of writing the
user stories to guarantee that the stories are written in the
business language they understand [98].

It is intuitive then to conclude that, before writing a
user story, the team has to think about what they expect
the system to do, and then think about a specific function-
ality to be delivered. That process can be regarded as the
brainstorming practice in traditional RE.

 Prototyping: is one of the fastest and most effective ways
to help the customer visualises requirements. Prototyping
narrows the gap between what the customer desires to see
in the system and what the requirements, when
implemented, will actually look like. There are three main
types of prototypes: low-fidelity, high-fidelity, and
wizard-of-oz prototypes. (1) The low-fidelity prototype is
a mockup of user interfaces sketched on a paper or with a
computer-based sketching tool (e.g. Balsamiq) [100,101].
(2) The high-fidelity prototype is a realistic mockup of
user interfaces that are rapidly implemented in software
or as a web page (e.g. Axure), providing limited aspects of
functionalities to be simulated or demonstrated (e.g.
navigation or a walk-through of a task scenario) [102]. (3)
The wizard-of-oz prototype is an acting prototype, in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 477
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

which a person simulates the responses of the system in
response to some user inputs [4].

Unlike traditional development, prototypes in agile
are used to help understand the difficult requirements
and bridge the gap between the various perspectives of
the different stakeholders, and not to be part of the
developed system; thus, they are mostly treated as throw-
away prototypes.

4.2 Requirements Analysis and Negotiation
Like traditional development, the analysis and negotiation
phase in agile checks the requirements for completeness,
consistency, essentiality, and feasibility. This is achieved
through conducting JADS for all the involved stakeholders to
prioritise the already made user stories and to sort out any
conflicts/omissions, if any, in the requirements. Since JADs
and user stories were covered earlier, next prioritisation is
summarised.
 Prioritisation: is the practice where the order of the

features, to be implemented, is defined. Usually, the core
requirements are to be implemented firstly, followed by
those of lesser importance. Though in many cases,
different stakeholders will assign different priorities to the
same requirement – indicating either different perceptions
or real needs – a consensus has to be reached to determine
one priority level for each requirement [4].

Despite the fact that the prioritisation practice exists
in both approaches (agile and traditional), there are still
two main differences: the criteria on which prioritisation
is based and the frequency of performing prioritisation
[103]. In agile, prioritisation takes place before each de-
velopment iteration, and not just one time, as in the tradi-
tional approach, before the development starts. Unlike
traditional development that prioritises requirements
based on many criteria (i.e. risks, cost, implementation
dependencies, business value, and time), the agile ap-
proach prioritises requirements based mostly on the high-
est business value they deliver.

4.3 Requirements Modelling
Agile modelling is very different in purpose when compared to that
of the traditional development. The basic idea of agile
modelling is to guide the developing team to build models
that resolve the problems of design without the need to
overbuild these models [104]. In other words, agile models are
used to help understand the small part of the system currently
under development without the need to invest a lot of time
and effort in overdeveloping them, because most probably
they will not become a part of the system documentation.
They are mostly temporary throw-away models that are
drawn on a whiteboard or a paper that discarded after
fulfilling their purpose [104].

Unlike ASD, traditional development keeps all the
models, at the different levels of abstractions, to become a part
of the system documentation, and that needs to be kept up-to-
date with any future alterations.

4.4 Requirements Validation
Agile methods use frequent review meetings and various tests
to validate requirements. Though ASD shares the same
techniques as those of the traditional approach, there are still
some differences; further details come next.
 Review Meetings: unlike traditional development, when

agile validates requirements, it actually is validating a
working piece of software and not a huge requirements
specifications document. At the end of each development
cycle, a review meeting is held to communicate and re-
solve the concerns and issues that have been raised during
that cycle. Review meetings keep the development team
along with the rest of the stakeholders on the same track,
while highlighting any problems as early as possible. In
addition, conducting review sessions helps increasing the
trust and confidence of the customer in the developing
team when the output of the review dictates that the pro-
ject is on the right track.

 Testing: is another method for validating the output of a
development cycle. The most common testing methods
are acceptance test (AT) [98], test-driven development
(TDD) [105,106], and acceptance test-driven development
(ATDD) [107]. AT is considered the satisfaction
condition(s) that determines whether a feature is
successfully implemented. It treats the requirement as a
black box, once that feature passes the test, then no more
work will be introduced to that feature and the team starts
to develop the next feature in queue. TDD, on the other
hand, is an evolutionary testing approach where tests are
developed before the code is written. Prior coding, these
tests are expected to fail, but eventually, when the
implementation is finished, they should be passed. The
ATDD test is a set of process patterns that helps the team
build the right software product. It has four main
advantages: (1) keeps the documentation living; (2)
guarantees a higher product quality; (3) decreases the
amount of rework; and (4) enhances the alignment of
activities of the different roles on a project. Hence, it can
be concluded that ATDD mostly sorts out the challenges
of change/version control, requirements tracing, and
requirements status tracking faced in the traditional
approach.
The main difference between traditional and agile

development in requirements validation is the strong
emphasis placed on testing in the agile methods.

4.5 Requirements Management
In traditional development, requirements are primarily
managed through keeping a documentation that captures,
stores, and traces all the states of each requirement since it was
initially elaborated in the elicitation stage until its
implementation is finished. Though keeping all these
information provides relationships between the requirements,
the design, and the implementation of the system, writing and
managing such a huge documentation is a complicated and
time-consuming task. Not to mention, the high risk that one

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 478
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

might get lost when searching for a piece of information in
that huge documentation.

Agile development, on the other hand, believes that
changes in the system requirements is inevitable; thus,
welcoming and accommodating changes at any stage in the
project is the core essence of the agile methods. The agile
approach makes it easier and less expensive to implement
changes compared to that of the traditional development.
Managing requirements changes in agile methods is achieved
through three main practices: iterative requirements
engineering, frequent short releases, and immediate
customer’s feedback.
 Iterative RE: requirements are not defined prior to the

start of the development but rather they emerge
throughout the process. In the beginning, the
development team obtains the big picture of the most
critical (with the highest business value) features of the
application, through performing a high-level
requirements analysis (no detailed specifications at that
stage). Then, before the start of each development
iteration, the RE process is performed in order to collect
more details about the features to be implemented in that
iteration.

 Frequent Short Releases: is the practice of delivering
working pieces of software frequently, in order to make
the customer realises the expected results faster, and to
enable them to form a mental map of how the system
would look like. If the output does not conform to the
customer’s needs, then the required changes will be
pointed out at the earliest possible time of the project.
Additionally, each release adds up to the experience of the
development team; thus leading to a continuous
improvement in the performance of the developing team
in the subsequent releases.

 Immediate Customer’s Feedback: at the end of each
iteration, the customer shares their feedback with the
development team, requesting changes if their
expectations are not met. Moreover, the customer
conducts a planning meeting, before each iteration, to
align their purpose with the development team and to
ensure that the team has all the necessary details that will
enable them to successfully deliver the next iteration.
To conclude, managing requirements change through

constant planning minimises the probability of having post-
development changes; hence, no or very little extra cost is
incurred by the project.

To this end, Table 2. summarises the commonalities and
differences between traditional and agile approaches for the
main tasks of RE, underlining the associated agile RE practices
for each task.

5 CHALLENGES OF AGILE RE PRACTICES
Despite the many advantages offered by ASD and the various
merits that come along with its practices, there are still some
associated challenges. The main challenges of the agile
approach are cost and schedule estimation, non-functional

requirements, and customer’s access and participation.
1. Cost and Schedule Estimation: it is very difficult to

provide an accurate cost and schedule estimation in ASD,
because the initial estimation of the project size is based
on the known user stories at that time. Actually,
estimation for completion dates in agile projects is not
advised because embracing changes will undoubtedly
make these dates obsolete [108]. However, the short
iterations and the frequent feedback, eventually, enable
the development team to provide better estimates for each
iteration. Hence, it can be concluded that agile
development delivers more precise cost and schedule
estimates, but cannot deliver such an accuracy level at the
beginning of the project.

2. Non-Functional Requirements (NFR): in spite of the
critical role of NFR in RE for the success of a project [109],
neither agile nor traditional development has addressed it
properly. Though the research in the past decade is urging
the development of not only adequate functional
requirements but also adequate NFR [110], the majority of

 TABLE 2
 TRADITIONAL VERSUS AGILE RE TASKS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 479
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

the work focusing on NFR is still partial and incomplete,
as integrating NFR into the different phases of software
development is still difficult and very much challenging
[111].

3. Customer’s Access and Participation: In custom-
developed projects, agile development strongly believes
in the effective and intensive communication between the
customer and the developing team [112]. In order to
realise this, three factors are assumed: (1) the developing
team has an on-site customer; (2) the customer trusts the
developing team; and (3) the development team manages
to reach a consensus among all the customer’s
representatives.
The first factor is difficult to accomplish except only in XP

teams, where a full-time on-site customer is dictated. Since the
customer’s representatives are expected to be usually busy
doing their original jobs, the best-case scenario, then, is to
have a part-time on-site customer’s representative. The second
factor is most likely to come true probably after seeing the
output of the first few iterations and how the time-to-market
has been minimised, while delivering stable working software
with the most important business value. The last factor is quite
challenging, as it is very hard to unify the perspectives of the
different customer’s representatives involved in the project. To
resolve this issue, the team will be spending extra effort to
negotiate the requirements with each representative and then
integrate the resulting individual outputs.

6 PROMISING AGILE RE RESEARCH AREAS
In spite of the large amount of literature and work explored in
the earlier sections, the RE field is still full of plenty of rich
research areas. In this section, the most promising agile RE-
related areas are explored.
1. Scalability: the ongoing growth of size in software

systems has drawn the attention of many practitioners
and researchers even more than it did before. Scale is not
monopolised by its usual referral to significant size; there
are many other scale factors such as complexity,
variability management in software product lines (SPL)
[113], and degree of heterogeneity in distributed systems.

2. Software Reuse: facilitating the reuse of existing software
components is a critical step in making the RE tasks more
prescriptive and systematic. This research area is of a
paramount importance SPL. The RE challenges in SPL are:
developing strategic and effective techniques for
analysing domains, and how to efficiently and effectively
manage and document variability.

3. Self-Adaptive Systems: are systems that can
automatically maintain themselves throughout the
different scenarios, such as the self-healing systems that
dynamically recover from a system failure, faults, errors,
or security breaches [114]. The RE research problems in
self-adaptive systems include but not limited to: (1)
identifying and specifying thresholds for when the system
should adapt; (2) specifying variable sets of requirements;

(3) monitoring the system and environment in comparison
with the elicitated requirements, in order to ensure that
the behaviour of the system meets the specified
requirements when operating in a dynamic environment;
and (4) verifying models of adaptive systems and their
sets of possible behaviours [115].

4. Cyber-Physical Systems (CPS): the increasing
dependence on systems that are strongly coupled with the
monitoring and the controlling of entities in the physical
world has widely encouraged the research in the CPS
field. A CPS is an engineered system where there is a tight
combination of, and coordination between, its
computational and physical elements; for example:
sensor-based and autonomous automotive systems [116].
One of the RE dilemmas in CPS of assigning
responsibilities to: the software system under
consideration, the peer software systems, the hardware
interface devices, the human operators, and the users
[117]. With such new challenges, a call for new concepts
to model, simulate, verify, validate, and visualise the
behaviour of the physical and the human entities and
their interfaces with the computing system has become
crucial.

5. Non-Functional Requirements: the obvious neglect for
NFR in research and practice, in comparison with the
received attention in functional requirements, made it a
very rich area for research.

6. Methodologies, Patterns, and Tools [6]: information on
applying RE technologies, methodically, is essential to
take these technologies from research to practice. Due to
the partial solutions offered or suggested by the existing
patterns and strategies, some level of uniformity and
predictability is entailed in the resulting requirements.
Research into how to incorporate requirements
technologies into an integral requirements process is
needed. This is a core challenge that requires approaches
to cross-connect the different elements (goals, scenarios,
data, functions, state-based behaviour, and constraints) of
requirements modelling [6].

7 CONCLUSION
In the past decade, agile development has gained a significant
global recognition affined to software projects’ success due to
its core concept of valuing individuals and interactions,
working software, customer collaboration, and responding to
change. We strongly believe that agile perfectly fits the
changing nature of RE, thus bringing agile into the world of
RE will guarantee a greater and a faster success.

RE researchers have the opportunity to enhance and
further extend their work, through the adoption of ASD
methods. There are many promising RE research areas in
which agile can be perfectly fit such as solving problems
related to variability and components reuse in SPL, verifying
models of adaptive systems, or developing tools/approaches/
techniques/patterns to help taking technologies from research
to practice. Other RE areas that can benefit from the agile

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 480
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

adoption include but are not limited to: NFRs, CPS, and scale
factors. As for our work, we are much interested in two
directions: SPL and CPS. We, however, have not yet decided
towards which area our research is heading; a further in-depth
investigation will be carried out.

In this paper, we reviewed the research state-of-the-art in
traditional RE, the various methods of the ASD, the most
common RE practices used in agile and the challenges
imposed by their adoption, the commonalities and differences
between agile and traditional RE approaches, and finally the
prime research opportunities in the agile RE field.

REFERENCES

[1] K. Beck, M. Beedle, A.V. Bennekum, A. Cockbur, M. Fowler, J.

Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R.C.
Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas,
“Manifesto for Agile Software Development,”
http://www.agilemanifesto.org. 2001.

[2] L. Westfall, “Software Requirements Engineering: What, Why, Who,
When and How,” The Westfall Team,
http://www.westfallteam.com/Papers/The_Why_What_Who_When
_and_How_Of_Software_Requirements.pdf. 2006.

[3] The Standish Group, “The CHAOS Manifesto 2011 Report,”
http://blog.standishgroup.com/cm2011. 2011.

[4] I. Sommerville and P. Sawyer, Requirements Engineering, John Wiley &
Sons, 1997.

[5] A. Sillitti, M. Ceschi, B. Russo, and G. Succi, “Managing uncertainty in
requirements: a survey in documentation-driven and agile companies,”
Proc. 11th IEEE Int. Symposium on Software Metrics, pp. 10–17, 2005.

[6] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements
Engineering,” Proc. Future of Software Engineering, pp. 285–303, 2007.

[7] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero, “Visual Timed
Event Scenarios,” Proc. 26th International Conf. on Software Engineering,
pp. 168–177, 2004.

[8] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“TROPOS: An Agent-Oriented Software Development Methodology,”
J. Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236,
2004.

[9] E. Letier and A. V. Lamsweerde, “Agent-based Tactics for Goal-
Oriented Requirements Elaboration,” Proc. Int. Conf. on Software
Engineering, pp. 83–93, 2002.

[10] E. Yu., “Agent Orientation as a Modelling Paradigm,” J.
Wirtschaftsinformatik, vol. 43, no. 3, pp. 123–132, 2001.

[11] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence
Charts,” J. Formal Methods in Systems Description, vol. 19, no. 1, pp. 45–
80, 2001.

[12] A. Cockburn, Writing Effective Use Cases, Addison-Welsey, 2001.
[13] G. Sindre and A.L. Opdahl, “Templates for Misuse Case Description,”

Proc. 7th Int. Workshop on Requirements Engineering, Foundation for
Software Quality, pp. 125–136, 2001.

[14] S. Uchitel, J. Kramer, and J. Magee, “Negative Scenarios for Implied
Scenario Elicitation,” Newsletter ACM SIGSOFT Software Engineering
Notes, vol. 27, no. 6, pp. 109–118, 2002.

[15] A.V. Lamsweerde, “Elaborating Security Requirements by
Construction of Intentional Anti-models,” Proc. 26th Int. Conf. on
Software Engineering, pp. 148–157, 2004.

[16] L. Chung and J.C.P. Leite, “On Non-Functional Requirements in
Software Engineering,” Conceptual Modeling: Foundations and
Applications, Springer-Verlag Berlin, Heifelberg, pp. 363–379, 2009.

[17] A.V. Lamsweerde, “Goal-Oriented Requirements Engineering: A
guided tour,” Proc. 5th IEEE Int. Symposium on Software Engineering, pp.
249–263, 2001.

[18] S. Anwer and N. Ikram, “Goal Oriented Requirement Engineering: A

Critical Study of Techniques,” Proc. 13th Asia Pacific Conf. Software
Engineering, pp. 121–130, 2006.

[19] T.D. Breaux and A.I. Anton, “Analysing Goal Semantics for Rights,
Permissions, and Obligations,” Proc. 13th IEEE Int. Conf. on Requirements
Engineering, pp. 177–188, 2005.

[20] H. Sharp, A. Finkelstein, and G. Galal, “Stakeholder identification in
the Requirements Engineering Process,” Proc. 10th Int. Workshop on
Database and Expert Systems Applications, pp. 387–391, 1999.

[21] A. Cooper, The Inmates are Running the Asylum, Macmillan Publishing
Co., Inc., 1999.

[22] M. Aoyama, “Persona-and-Scenario Based Requirements Engineering
for Software Embedded in Digital Consumer Products,” Proc. 13th IEEE
Int. Conf. on Requirements Engineering, pp. 85–94, 2005.

[23] C. Potts, “Metaphors of Intent,” 9th IEEE Int. Conf. on Requirements
Engineering, pp. 31–39, 2001.

[24] T. Cohene and S. Easterbrook, “Contextual Risk Analysis for Interview
Design,” 13th IEEE Int. Conf. on Requirements Engineering, pp. 95–104,
2005.

[25] A. Sutcliffe, S. Fickas, and M.M. Sohlberg, “PC-RE: A Method for
Personal and Context Requirements Engineering with Some
Experience,” J. Requirements Engineering, vol. 11, no. 3, pp. 157–173,
2006.

[26] N. Maiden and S. Robertson, “Integrating creativity into requirements
processes: Experiences with an air traffic management system,” Proc.
13th IEEE Conf. on Requirements Engineering, pp. 105–116, 2005.

[27] R. France and B. Rumpe, “Model-Driven Development of Complex
Systems: A research Roadmap,” Proc. Future of Software Engineering, pp.
37–54, 2007.

[28] G. Gabrysiak, H. Giese, and A. Seibel, “Interactive Visualization for
Elicitation and Validation of Requirements with Scenario-Based
Prototyping,” Proc. 4th Int. Workshop on Requirements Engineering
Visualisation, pp. 41–45, 2009.

[29] H. L. McQuaid, A. Goel, and M. McManus, “When You Can't Talk to
Customers: Using Storyboards and Narratives to Elicit Empathy for
Users,” Proc. 2003 Int. Conf. on Desigining Pleasurable Products and
Interfaces, pp. 120–125, 2003.

[30] H.T. Van, A.V. Lamsweerde, P. Massonet, and C. Ponsard, “Goal-
Oriented Requirements Animation,” Proc. 12th IEEE Int. Conf. on
Requirements Engineering, pp. 218–228, 2004.

[31] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer, “Graphical
Animation of Behavior Models,” Proc. 22nd Int. Conf. on Software
Engineering, pp. 499–508, 2000.

[32] H. In, B. Boehm, T. Rodgers, and M. Deustsch, “Applying WinWin to
Quality Requirements: A Case Study,” Proc. 23rd Int. Conf. on Software
Engineering, pp. 555–564, 2001.

[33] C. Rolland and N. Prakash, “Matching ERP System Functionality to
Customer Requirements,” Proc. 5th IEEE Int. Symposium on Requirements
Engineering, pp. 66–75, 2001.

[34] C. Alves and A. Finkelstein, “Challenges in COTS Decision Making: A
Goal-Driven Requirements Engineering Perspective,” Proc. 14th Int.
Conf. on Software Engineering and Kowledge Engineering, pp. 789–794,
2002.

[35] W.N. Robinson, S.D. Pawlowski, and V. Volkov, “Requirements
Interaction Management,” J. ACM Computing Surveys, vol. 35, no. 2, pp.
132–190, 2003.

[36] Y. Lee and W. Zhao, “An Ontology-Based Approach for Domain
Requirements Elicitation and Analysis,” Proc. 1st Int. Multi-Symposiums
on Computer and Computational Sciences, vol 2, pp.364–371, 2006.

[37] F. Chantree, B. Nuseibeh, A.D. Roeck, and A. Willis, “Identifying
Nocuous Ambiguities in Natural Language Requirements,” Proc. 14th
IEEE Int. Conf. on Requirements Engineering, pp. 59–68, 2006.

[38] K.S. Wasson, “A case study in systematic improvement of language for
requirements,” Proc. 14th IEEE Int. Conf. on Requirements Engineering, pp.
6–15, 2006.

[39] P. Sawyer, P. Rayson, and K. Cosh, “Shallow knowledge as an aid to
deep understanding in early phase requirements engineering,” IEEE

IJSER

http://www.ijser.org/
http://www.agilemanifesto.org/
http://www.westfallteam.com/Papers/The_Why_What_Who_When_and_How_Of_Software_Requirements.pdf
http://www.westfallteam.com/Papers/The_Why_What_Who_When_and_How_Of_Software_Requirements.pdf
http://blog.standishgroup.com/cm2011

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 481
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Trans. on Software Engingeering, vol. 31, no. 11, pp. 969–981, 2005, doi:
10.1109/TSE.2005.129.

[40] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application of
Linguistic Techniques for Use Case Analysis,” Proc. IEEE Joint Int. Conf.
on Requirements Engineering, pp. 157–164, 2002.

[41] C. Nentwich, W. Emmerich, A. Finkelsteiin, and E. Ellmer, “Flexible
Consistency Checking,” J. ACM Trans. on Software Engineering and
Methodolofy, vol. 12, no. 1, pp. 28–63, 2003.

[42] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw, “Automated
Consistency Checking of Requirements Specifications,” J. ACM Trans.
on Software Engineering and Methodology, vol. 5, no. 3, pp. 231–261, 1996.

[43] G. Engels, J.M. Kuster, R. Heckel, and L. Groenewegen, “A
Methodology for Specifying and Analyzing Consistency of Object-
Oriented Behavioral Models,” Proc. 8th European Software Engineering
Conf. jointly with the 9th ACM SIGSOFT Int. Symposium on Foundations of
Software Engineering, pp. 186–195, 2001.

[44] L.A. Campbell, B.H.C. Cheng, W.E. McUmber, and R.E.K. Stirewalt,
“Automatically Detecting and Visualizing Errors in UML Diagrams,” J.
Requirements Enginering, vol. 7, no. 4, pp. 264–287, 2002.

[45] T.C. de Sousa, J.R. Almeida Jr., S. Viana, and J. Pavón, “Automatic
Analysis of Requirements Consistency with the B Method,” Newsletter
SIGSOFT Software Engineering Notes, vol. 35, no. 2, pp. 1–4, 2010.

[46] M. Kamalrudin, “Automated Software Tool Support for Checking the
Inconsistency of Requirements,” Proc. 2009 IEEE/ACM Int. Conf. on
Automated Software Engineering, pp. 693–697, 2009.

[47] A.V. Lamsweerde and E. Letier, “Handling Obstacles in Goal-Oriented
Requirements Engineering,” IEEE Trans. on Software Engineering, vol.
26, no. 10, pp. 978–1005, 2000, doi: 10.1109/32.879820.

[48] R. Lutz, A. Patterson-Hine, S. Nelson, C.R. Frost, D. Tal, and R. Harris,
“Using Obstacle Analysis to Identify Contingency Requirements on an
Unpiloted Aerial Vehicle,” J. Requirements Engineering, vol. 12, no. 1, pp.
41–54, 2007.

[49] P. Baker, P. Bristow, C. Jervis, D. Kind, R. Thomson, B. Mitchell, and S.
Burton, “Detecting and Resolving Semantic Pathologies in UML
Sequence Diagrams,” Proc. 10th European Software Engineering Conf.
jointly with the 13th ACM SIGSOFT Int. Symposium on Foundation of
Software Engineering, pp. 50–59, 2005.

[50] J.H. Hausmann, R. Heckel, and G. Taentzer, “Detection of Conflicting
Functional Requirements in a Use Case-Driven Approach: A Static
Analysis Technique Based on Graph Transformation,” Proc. 24th Int.
Conf. on Software Engineering, pp. 105–115, 2002.

[51] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J.N.O. Dag“An
Industrial Survey of Requirements Interdependencies in Software
Product Release Planning,” Proc. 5th IEEE Int. Symposium on
Requirements Engineering, vol. 84–93, 2001.

[52] M.S. Feather, “Towards a Unified Approach to the Representation of,
and Reasoning with, Probabilistic Risk Information about Software and
its System Interface,” Proc. 15th Int. Symposium on Software Reliable
Engineering, pp. 391–402, 2004.

[53] A.V. Knethen and M. Grund, “QuaTrace: A Tool Environment for
(Semi-) Automatic Impact Analysis Based on Traces,” Proc. Int. Conf. on
Software Maintenance, pp. 246–255, 2003.

[54] S. Imtiaz and N. Ikram, and S. Imtiaz, “Impact Analysis from Multiple
Perspectives: Evaluation of Traceability Techniques,” Proc. 3rd Int. Conf.
on Software Engineering Advances, pp. 457–464, 2008.

[55] A. Sutcliffe, W.C. Chang, and R. Neville, “Evolutionary Requirements
Analysis,” Proc. 11th IEEE Int. Conf. on Requirements Engineering, pp.
264–273, 2003.

[56] A. Moreira, A. Rashid, and J. Araujo, “Multi-Dimensional Separation of
Concerns in Requirements Engineering,” Proc. 13th IEEE Int. Conf. on
Requirements Engineering, pp. 285–296, 2005.

[57] B. Regnell, L. Karlsson, and M. Host, “An Analytical Model for
Requirements Selection Quality Evaluation in Product Software
Development,” Proc. 11th IEEE Int. Conf. on Requirements Enginering, pp.
254–263, 2003.

[58] S. Liaskos, A. Lapouchnian, Y. Yijun, E. Yu, and J. Mylopoulous, “On

Goal-Based Variability Acquisition and Analysis,” Proc. 14th IEEE
Int. Conf. Requirements Engineering, pp. 79 –88, 2006.

[59] B. Gonzalez-Baixauli, J.C.S.D.P. Leite, and J. Mylopoulos, “Visual
Variability Analysis for Goal Models,” Proc. 12th IEEE Int. Conf. on
Requirements Engineering, pp. 198–207, 2004.

[60] S. Lauesen, “COTS Tenders and Integration Requirements,” J.
Requirements Enginering, vol. 11, no. 2, pp. 111–122, 2006.

[61] E. Hull, K. Jackson, and J. Dick, Requirements Engineering, Springer-
Verlag, 2011.

[62] P.P.S. Chen, “The Entity-Relationship Model – Toward a Unified View
of Data,” J. ACM Transactions on Database Systems – Special Issue: Papers
from the Int. Conf. on Very Large databases, vol. 1, no. 1, pp. 9–36, 1976.

[63] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” J.
Science Computer Programming, vol. 8, no. 3, pp. 9 231–274, 1987.

[64] P. Darke and G. Shanks, “User Viewpoint Modelling: Understanding
and Representing User Viewpoints During Requirements Definition,”
J. Information Systems, vol. 7, no. 3, pp. 213–219, 1997.

[65] D.T. Ross, “Structured Analysis (SA): A Language for Communicating
Ideas,” IEEE Trans. on Software Engineering, vol. 3, no. 1, pp. 16–34, 1977,
doi: 10.1109/TSE.1977.229900

[66] G. Kotonya and I. Sommerville, “Requirements Engineering with
Viewpoints,” J. Software Engineering, vol. 11, no. 1, pp. 5–11, 1996.

[67] P. Coad and E. Yourdon, Object-Oriented Analysis, Prentice-Hall, 1991.
[68] J.R. Rumbaugh, M.R. Blaha, W. Lorensen, F. Eddy, and W. Premerlani,

Object Modeling and Design, Prentice-Hall, 1991.
[69] X. Liu, H. Yang, and H. Zedan, “Formal Methods for the Re-

Engineering of Computing Systems: A comparison,” Proc. 21st Ann. Int.
Conf. on Computer Software and Applications, pp. 409–414, 1997.

[70] OMG, “The Unified Modelling Language Version 2”, www.omg.org. 2003.
[71] K. Ryan, “The Role of Natural Language in Requirements

Engineering,” Proc. IEEE Int. Symposium on Requirements Engineering,
pp. 240–242, 1993.

[72] J.M. Thompson, M.P.E. Heimdahl, and S.P. Miller, “Specification-Based
Prototyping for Embedded Systems,” Proc. 7th European Software
Engineering Conf. jointly with ACM SIGSOFT Int. Syposium on
Foundations of Software Engineering, pp. 163–179, 1999.

[73] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj, “SCR*: A Toolset
for Specifying and Analyzing Software Requirements,” Proc. 10th Ann.
Int. Conf. on Computer-Aided Verification, pp. 526–531, 1998.

[74] R. Jeffords and C. Heitmeyer, “Automatic Generation of State
Invariants from Requirements Specifications,” Newsletter ACM
SIGSOFT Software Engineering Notes, vol. 23, no. 6, pp. 56–69, 1998.

[75] R. Jhala and R. Majumdar, “Software Model Checking,” J. ACM
Computing Surveys, vol. 41, no. 4, pp. 21:1--12:54, 2009.

[76] D. Jackson, Software Abstractions: Logic, Language, and Analysis, The MIT
Press, 2006.

[77] L.K. Dillon and R.E.K. Stirewalt, “Inference Graphs: A Computational
Structure Supporting Generation of Customizable and Correct
Analysis Components,” IEEE Trans. on Software Engineering, vol. 29, no.
2, pp. 133–150, 2003, doi: 10.1109/TSE.2003.1178052.

[78] T. Bultan, “Action Language: A Specification Language for Model
Checking Reactive Systems,” Proc. 2000 Int. Conf. on Software
Engineering, pp. 335–344, 2000.

[79] J. Clelland-Huang, R. Settimi, O. BenKhadra, and E. Berezhanskaya,
“Goal-Centric Traceability for Managing Non-Functional
Requirements,” Proc. 27th Int. Conf. on Software Engineering, pp. 362–371,
2005.

[80] M. Sabetzadeh and S. Easterbrook, “Traceability in Viewpoint
Merging: A Model Management Perspective,” Proc. 3rd Int. Workshop on
Traceability in Emerging Forms of Software Engineering, pp. 44–49, 2005.

[81] A. Marcus and J. Maletic, “Recovering Documentation-to-Source-Code
Traceability Links Using Latent Semantic Indexing,” Proc. 25th Int. Conf.
on Software Engineering, pp. 125–135, 2003.

[82] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram, “Advancing Candidate
Link Generation for Requirements Tracing: The Study of Methods,”
IEEE Trans. on Software Engineering, vol. 32, no. 1, pp. 4–19, 2006, doi:

IJSER

http://www.ijser.org/
http://www.omg.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 482
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

10.1109/TSE.2006.3.

[83] J. Cleland-Huang, G. Zemont, and W. Lukasik, “A Heterogeneous
Solution for Improving the Return on Investment of Requirements
Traceability,” Proc. 12th IEEE Int. Conf. Requirements Engineering, pp.
230–239, 2004.

[84] D. Bush and A. Finkelstein, “Requirements Stability Assessment Using
Scenarios,” Proc. 11th IEEE Int. Conf. Requirements Engineering, pp. 23–32,
2003.

[85] L. Williams and A. Cockburn, “Agile Software Development: It’s
About Feedback and Change,” Computer Magasine, vol. 36, no. 6, pp.
39–43, 2003.

[86] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of migrating
to agile methodologies,” Communication of the ACM Magasine –
Adaptive Complex Enterprises, vol. 8, no. 5, pp. 72–78, 2005.

[87] B. Bohem and R. Turner, Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley, 2003.

[88] K. Schwaber and M. Beedle, Agile Software Development with Scrum,
Prentice Hall, 2001.

[89] K. Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 2000.

[90] K. Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 2004.

[91] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-driven
Development, Prentice Hall, 2002.

[92] DSDM Consortium and J. Stapleton, DSDM: Business Focused
Development, Pearson Education, 2003.

[93] A. Cockburn, Crystal Clear: A Human-Powered Methodology for Small
Teams, Addison-Wesley, 2004.

[94] J.A. Highsmith, Adaptive Software Development, Dorset House, 1996.
[95] K. Holtzblatt and H.R. Beyer, “Requirements Gathering: The Human

Factor,” Communication of the ACM Magasine, vol. 38, no. 5, pp. 30–32,
1995.

[96] L.A. Macaulay, Requirements Engineering, Springer-Verlag, 1996.
[97] J. Wood and D. Silver, Joint Application Development, John Wiley & Sons,

1995.
[98] M. Cohn, User Stories Applied for Agile Software Development, Addison-

Wesley, 2004.
[99] J. Savolainen, J. Kuusela, and A. Vilavaara, “Transition to Agile

Development – Rediscovery of Important Requirements Engineering
Practices,” Proc. 18th IEEE Int. Conf. on Requirements Engineering, pp.
289–294, 2010.

[100] M. Kamalrudin and J. Grundy, “Generating Essential User Interface
Prototypes to Validate Requirements,” Proc. 26th IEEE/ACM Int. Conf.
on Auted Software Engineering, pp. 564 – 567, 2011.

[101] A. Hosseini-Khayat, T.D. Hellmann, and F. Maurer, “Distributed and
Automated Usability Testing of Low-Fidelity Prototypes,” Proc. Ann.
Agile Conf., pp. 59–66 , 2010.

[102] Z. Hussain, W. Slany, and A. Holzinger, “Investigating User-Centered
Design in Practice: A Grounded Theory Perspective,” 5th Symposium of
the Workgroup Human-Computer Interaction and Usability Engineering of
the Austrian Computer Society, Springer Berlin, pp. 279–289, 2009.

[103] D. Firesmith, “Prioritizing requirements,” J. Object Technology, vol .3,
no. 8, pp. 35–47, 2004.

[104] S.W. Ambler, Agile Modeling, John Wiley & Sons, 2001.
[105] K. Beck, Test Driven Development: By Example, Addison-Wesley

Professional, 2003.
[106] D. Astels, Test Driven Development: A Practical Guide, Prentice Hall,

2003.
[107] G. Adzic, Specification by Example: How Successful Team Deliver the Right

Software, Manning Publications Co., 2011.
[108] K. Beck, “Embracing change with extreme programming,” Computer

Magasine, vol. 32, no. 10, pp. 70–77, 1999.
[109] A. Matoussi and R. Laleau, “A Survey of Non-Functional

Requirements in Software Development Process,” Laboratory of
Algorithmic, Complexity, and Logic. Technical Report. TR–LACL–2008–7,
2008.

[110] L.M. Cysneiros and J.C.S. do Prado Leite, “Non-Functional

Requirements: From Elicitation to Modeling Languages,” Computer
Magasine, vol. 35, no. 3, pp. 8–9, 2002.

[111] S. Ullah, M. Iqbal, and A.M. Khan, “A survey on Issues in Non-
Functional Requirements Elicitation,” Proc. 2011 Int. Conf. on Computer
Networks and Information Technology, pp. 333–340, 2011.

[112] M. Keil and E. Carmel, “Customer-Developer Links in Software
Development,” Communication of the ACM Magasine, vol. 38, no. 5, pp.
33–44, 1995.

[113] L. Chen and M.A. Babar, “A Systematic Review of Evaluation of
Variability Management Approaches in Software Product Lines,” J.
Information and Software Technology, vol. 53, no. 4, pp. 344–362, 2011.

[114] S. Ramamoorthy, S.P. Rajagopalan, and S. Sathyalakshmi, “Process for
Security in Self-Healing Systems’ Architecture,” Proc. Int. Conf. on
Sustainable Energy and Intelligent Systems, pp. 839–843, 2011.

[115] N.A. Qureshi and A. Perini, “Engineering Adaptive Requirements,”
Proc. ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, pp. 126–131, 2009.

[116] R. Rajkumar, L. Insup, S. Lui, and J. Stankovic, “Cyber-Physical
Systems: The Next Computing Revolution,” Proc. 47th ACM/IEEE
Design Automation Conf., pp. 731–736, 2010.

[117] E. Letier and A.V. Lamsweerde, “Agent-based tactics for goal-oriented
requirements elaboration,” Proc. 24th Int. Conf. on Software Engineering,
pp. 83–93, 2002.

IJSER

http://www.ijser.org/

	Agile and Traditional Requirements Engineering: A Survey
	1 Introduction
	2 Requirements Engineering
	2.1 Requirements Elicitation
	2.2 Requirements Analysis and Negotiation
	2.3 Requirements Modelling
	2.4 Requirements Validation and Verification
	2.5 Requirements Management

	3 Agile Software Development
	3.1 Scrum
	3.2 Extreme Programming (XP; XP2)
	3.3 Feature-Driven Development (FDD)
	3.4 Dynamic Systems Development Method (DSDM)
	3.5 The Crystal Methodologies
	3.6 Adaptive Software Development

	4 Agile Requirements Engineering
	4.1 Requirements Elicitation
	4.2 Requirements Analysis and Negotiation
	4.3 Requirements Modelling
	4.4 Requirements Validation
	4.5 Requirements Management

	5 Challenges of Agile RE Practices
	6 Promising Agile RE Research Areas
	7 Conclusion
	References

